
Simulating Bone-like Strain Adaptation in Space Trusses 1

Simulating Bone-like Strain Adaptation in Space Trusses

Abstract

In biomechanics, Wolff’s law posits that spongy bone is bolstered where internal strain is
greatest, and vice versa, producing an anisotropic trabecular structure with superior
strength-to-weight performance. In the interest of applying this advantage to building
components or entire structures, the present paper pursues a biomimetic application of
Wolff’s law to space trusses made up of linear beam elements. Two algorithms are
compared, the most successful of which reduces mechanical strain in trusses under
several different initial conditions.

1 Introduction

This research seeks generative strategies for space trusses mimicking the remodeling
process in trabecular bone tissue. Speculative benefits of being able to produce this kind
of porous geometry include improved strength-to-weight performance and stress
resistance of volumetric building components; greater inter-visibility and permeability of
such components; and the potential for them to be used as a scaffolding for other
embedded materials.

German anatomist Julius Wolff (1836-1902) posited that human bone adapts to physical
loading by strengthening where loads are greater, and vice versa. “Wolff’s Law” has
since been experimentally verified to a high degree of precision (Maurer et al. 2015;
Tsubota et al. 2009). When force is applied to the bone matrix, mechanical loads are
translated into biological signals through a process called “mechanotransduction”
(Mullender et al. 2004). Where bone is stretched or compressed, it is more likely to be
remodeled and to form thicker bone.
The actual cycle of bone remodeling involves at least three kinds of cells (Figure 1).

Figure 1. Cycle of Bone Remodelling.

Simulating Bone-like Strain Adaptation in Space Trusses 2

Over time this process rearranges bone tissue such that the matrix of cancellous bone
aligns with cyclic loadings (Figure 2).

Figure 2. Bone Anisotropy in Response to Loading.
There is precedent for mimicking the bone formation process in simulation, especially in
medical fields (Boyle and Kim 2011). Most simulation approaches employ FEA (finite
element analysis), although there are some exceptions (Velasco, Lancheros, and Garzón-
Alvarado 2016). FEA attempts to solve a large system of equations to derive mechanical
properties like strain at given points within a geometry subject to certain forces. Since
bone remodeling is likely driven by mechanical impulses like strain (Mullender et al.
2004), there must be some framework to predict or calculate strain at key points in the
geometry.
In this case we abstract the spongy matrix of bone as a network of essentially linear
elements connecting a collection of points, for the sake of computational tractability.
It is worth noting that topology optimization for strain minimization has been
implemented in numerous ways in the aerospace and other engineering fields (Zhang et al.
2016). However, bone remodeling is optimized for cyclical strains rather than static loads.
Moreover, bone remodeling is intrinsically an agent-based process, with bone cells as the
agents, unlike most optimization algorithms which iteratively assess global metrics.
These facts favor a different approach to mimicking bone remodeling, and encapsulate
the novel potential of this research compared to existing tools. To distinguish the two
approaches, we call the present strategy “proxy-optimization.”
In earlier iterations, our software pipeline employed Karamba, a structural analysis plugin
for Grasshopper, to conduct FEA. The recursive step, shown as a doubled-back arrow in

Simulating Bone-like Strain Adaptation in Space Trusses 3

Figure 3, was accomplished with the plugin Anemone. The latest version of the pipeline
uses C# components with direct calls to an FEA library, instead of Karamba and
Anemone, in order to reduce dependency on proprietary or poorly-documented plugins.
While we use Millipede for the isosurface mesh reconstruction, the technique (the
Marching Cubes algorithm) is open source (Lorensen and Cline 1987). The complete
latest pipeline is illustrated below (Figure 3).

Figure 3. Software Pipeline.

The following section outlines our setup for an FEA-driven topology proxy-optimization
algorithm. It is designed to approximate solid geometry as a space-filling truss, though
theoretically it can be approximated as any kind of finite element geometry (beam, shell,
voxel, etc). The subsequent section demonstrates a use case by comparing the
performance of two different applications of this method.

2 Methods

Both algorithms examined had the same basic structure of three stages:
1) The first stage takes as input three solid regions, ‘load’, ‘mass’, and ‘support’

(Figure 4). The mass region is the domain to be filled with a truss of beam-
connected nodes. Any distribution and connectivity of nodes can be used, but for the
following examples a random distribution is chosen. In this case, their connectivity
is determined by generating the 3d Voronoi diagram; two nodes are considered
connected if the Voronoi cells containing them share a face. This helps limit
connections between relatively distant pairs of nodes, an intuitive constraint on most
trusses where beams can only be made so long.

Simulating Bone-like Strain Adaptation in Space Trusses 4

Figure 4. Step 1: Defining Load, Mass, and Support Regions.
2) The next portion of the algorithm begins by solving the finite element model of this

truss for physical properties in each node and beam. This information then informs
how the model should be changed. This cycle of analyzing and updating is iterated a
user-specified number of times. Two different heuristic approaches to the update
step were implemented, each described here separately:

a) Subtractive: This heuristic method removes a user-specified number of beams
with the highest maximum stress. This is comparable to evolutionary structural
optimization (ESO) methods of topology optimization (Zhang et al. 2016). It is
illustrated in Figure 5 acting on the arch test geometry, discussed in the
following section, over the course of 100 iterations. A sample of 20 of these
iterations are arrayed left to right, top to bottom.

b) Bidirectional: This heuristic method adjusts the cross-sections of the beams,
thickening those most stressed and thinning those least stressed. At the end of
the set number of iterations, a fraction of the thinnest beams are removed. This
is comparable to bidirectional evolutionary structural optimization (BESO)
methods of topology optimization, which instead iteratively change the density
of solid elements as opposed to the cross-section of beam elements.

Simulating Bone-like Strain Adaptation in Space Trusses 5

Figure 5. Step 2 Proxy-optimization (subtractive heuristic).
3) After the iterative process is completed, the abstract points and lines defining the

nodes and beams can be reinterpreted and processed as solid geometry to suit the
needs of visualization and manufacture. The algorithm discussed here uses the
Millipede plugin to generate mesh representations of the beams as prisms.
Optionally, the output can also be viewed as an isosurface of the wire network, as in
Figure 6. Several inputs (Isovalue, Spread, Power, Strength) allow this isosurface
mesh to be tailored, affecting the vector field defining the isosurface and hence how
much of a buffer is formed between the mesh and the actual geometry. For example,
a smaller isovalue amounts to a mesh that is further displaced from the geometry,
smoother, and more globular. It should be acknowledged that approximation via
isosurface may have unforeseen effects on mechanical performance compared with
that of the idealized truss model.

Simulating Bone-like Strain Adaptation in Space Trusses 6

Figure 6. Step 3: Solid Visualization.

3 Results
Early tests showed signs that the algorithm obeyed intuitions, removing material from the
least-stressed regions of input geometry, leaving behind only the regions subjected to the
greatest strain. Figure 7 shows a simple rectangular prism mass region that was subjected
to different angular loads incident on its top, with the vertical axis showing different
fractions of the initial material remaining.

Figure 7. Early Tests.

Simulating Bone-like Strain Adaptation in Space Trusses 7

Algorithm performance was compared for four different test geometries, referred to as
box, column, lintel, and arch for brevity and clarity (see Figure 4). Each test geometry
specified load, mass, and support regions. In each case, a 100-node randomized truss was
used, a load of 1000 Newtons was applied to each node in the load region, and each node
in the support region was treated as having no degrees of freedom, i.e. being fixed in
space. Note that the load region covers the top of the geometry in the box, column, and
lintel examples, but only applies to the center in the arch example. Likewise, the support
covers the base in the box and column examples, but only applies to the sides in the lintel
and arch examples. This is evident in Figure 4, and is shown in detail in Figure 8. Arrows
represent applied and reaction force vectors.

Figure 8. Arch Test Case Load, Mass, and Supports.

These test geometries were run through each algorithm for 400 iterations each. See the
Appendix B for graphs of the average peak stress and moment vs. number of iterations
for the subtractive algorithm, for each test geometry. Likewise, see Appendix C for
quantitative results of the bidirectional algorithm. Visually, in these graphs we observe
consistent behaviors across most test cases:
1) Subtractive

a) Maximum element-wise max stress: decreasing at accelerating rate
b) Median element-wise max stress: increasing at constant rate

c) Average element-wise max stress: erratic
2) Bidirectional

a) Maximum element-wise max stress: decreasing at decelerating rate
b) Median element-wise max stress: decreasing, then erratic

Simulating Bone-like Strain Adaptation in Space Trusses 8

c) Average element-wise max stress: decreasing at decelerating rate
Qualitatively, the better-performing algorithm is the bidirectional; however, this does not
relate stress to the weight of the system, or any number of other metrics that could be
taken into account. The actual shape of the resultant trusses is also illuminating. Shown in
Figure 9 are isosurfaces generated from the final geometry output by the algorithm.

Figure 9. Isosurface Results (column, lintel, and arch).

As we can see in the arch and lintel test cases, from a truss initially randomly filling a
rectangular-prism-shaped mass region like those in Figure 4, an arch-like form emerges,
with most of the material removed from the center of the base where there are no
supports. This evolutionary emergence of the arch form, well known to be optimal in
many load-bearing situations, is of interest as a qualitative result, and bears some
testament to the intuitive functioning of these heuristics.

A 3d ceramic powder-printed example of the Subtractive Arch geometry is shown in
Figure 10, as a proof of concept for future physical prototyping, which might take
advantage of the already fertile field of custom 3d-printed ceramics research (Sabin and
Jones 2017; Sabin et al. 2014).

Simulating Bone-like Strain Adaptation in Space Trusses 9

Figure 10. 3d Printed Subtractive Arch Result.
Conclusion

Topology optimization is a readily available tool in architectural and other design fields,
but it is often obscured as a backend process in proprietary or poorly-documented plugins
(Aage et al. 2014). While this gives confidence of performance since optimization is
essentially a solved problem, it precludes experimentation with the algorithm itself. One
particular value of this research is its potential to make topology optimization directly
editable by designers.

A continuation of this research might proceed with writing from-scratch code to reduce
reliance on plugins. While FEA can be quite complex, beam theory and space trusses are
among its simplest and best understood applications, suggesting this effort may be viable.
Another potential avenue of research is to parametrize the algorithm space itself and
optimize those parameters, which could drastically speed the search for a good
biomimetic abstraction of bone remodelling processes.

Based on this research so far, a proxy-optimization approach to topology optimization
inspired by the mechanobiology of bone remodelling shows promise of combining
measurable performance benefits with greater flexibility for the algorithm designer.

Simulating Bone-like Strain Adaptation in Space Trusses 10

Acknowledgements

The author would like to acknowledge the invaluable guidance of Erleen Hatfield and
Jenny Sabin. Research on PolyBrick 2.0 during the summer of 2018 was generously
funded by the Sabin Lab at the College of Architecture, Art, and Planning, Cornell
University.

References

Aage, Niels, Oded Amir, Anders Clausen, Lior Hadar, Dana Maier, and Asbjørn Søndergaard.
2014. "Advanced Topology Optimization Methods For Conceptual Architectural Design".
In Advances In Architectural Geometry 2014, Springer. 159-179.

Boyle, Christopher, and Il Yong Kim. 2011. "Three-Dimensional Micro-Level Computational
Study Of Wolff's Law Via Trabecular Bone Remodeling In The Human Proximal Femur
Using Design Space Topology Optimization". Journal Of Biomechanics 44 (5): 935-942.

Lorensen, William E., and Harvey E. Cline. 1987. "Marching Cubes: A High Resolution 3D
Surface Construction Algorithm". ACM SIGGRAPH Computer Graphics 21 (4): 163-169.

Maurer, M.M., Weinkamer, R., Müller, R. et al. "Does Mechanical Stimulation Really Protect
the Architecture of Human Bone? A Simulation Study". Biomechanics and Modeling in
Mechanobiology (2015) 14: 795.

Mullender, M., A. J. El Haj, Y. Yang, M. A. van Duin, E. H. Burger, and J. Klein-Nulend. 2004.
"Mechanotransduction Of Bone Cells in Vitro: Mechanobiology Of Bone
Tissue". Medical And Biological Engineering And Computing 42 (1): 14-21.

Sabin, Jenny and Jones, Peter Lloyd. 2017. LabStudio: Design Research Between Architecture
and Biology. London & New York: Routledge Taylor and Francis.

Sabin, Jenny E., Martin Miller, Nicholas Cassab, and Andrew Lucia. 2014. "Polybrick:
Variegated Additive Ceramic Component Manufacturing (ACCM)". 3D Printing And
Additive Manufacturing 1 (2): 78-84.

Tsubota, Ken-ichi, Yusuke Suzuki, Tomonori Yamada, Masaki Hojo, Akitake Makinouchi, and
Taiji Adachi. 2009. "Computer Simulation Of Trabecular Remodeling In Human
Proximal Femur Using Large-Scale Voxel FE Models: Approach To Understanding
Wolff's Law". Journal Of Biomechanics 42 (8): 1088-1094.

Velasco, Marco A., Yadira Lancheros, and Diego A. Garzón-Alvarado. 2016. "Geometric And
Mechanical Properties Evaluation Of Scaffolds For Bone Tissue Applications Designing
By A Reaction-Diffusion Models And Manufactured With A Material Jetting
System". Journal Of Computational Design And Engineering 3 (4): 385-397.

Zhang, Weihong, Piotr Breitkopf, Jihong Zhu, and Tong Gao. 2016. Topology Optimization In
Engineering Structure Design. London: ISTE Press.

Simulating Bone-like Strain Adaptation in Space Trusses 11

Appendix A
Bidirectional Sample Code (abridged):
				//iteratively	update	radii	of	beams	
	
				for	(int	i	=	0;	i	<	iter;	i++){	
						foreach	(RStatBeam	b	in	FEM.Beams)	
						{	
								if	(Math.Abs(b.MaxStress)	<	lower_threshold)	
								{	
										double	rad	=	b.CrossSection.rr	*	(1	-	delta);	
										StatCrossSection	cs	=	FEM.AddSection(FEM.Materials[0],	"");	
										cs.CircSolid(rad,	b.CrossSection.Segments.Count);	
										b.CrossSection	=	cs;	
								}	
								else	if	(Math.Abs(b.MaxStress)	>	upper_threshold)	
								{	
										double	rad	=	b.CrossSection.rr	*	(1	+	delta);	
										StatCrossSection	cs	=	FEM.AddSection(FEM.Materials[0],	"");	
										cs.CircSolid(rad,	b.CrossSection.Segments.Count);	
										b.CrossSection	=	cs;	
								}	
						}	
						FEM.SolveSystem();	
				}	
	
				//remove	beams	with	smallest	radii	
	
				beamList	=	beamList.OrderBy(b	=>	Math.Abs(b.CrossSection.rr)).ToList().GetRange(0,	
(int)	(cutoff	*	FEM.Beams.Count));	
	
				foreach	(RStatBeam	b	in	beamList)	
				{	
						FEM.Beams.Remove(b);	
				}	
	 	

Simulating Bone-like Strain Adaptation in Space Trusses 12

Appendix B
Subtractive Heuristic Results

Box:

	
Column:

Lintel:

Simulating Bone-like Strain Adaptation in Space Trusses 13

Arch:

	
	 	

Simulating Bone-like Strain Adaptation in Space Trusses 14

Appendix C
Bidirectional Heuristic Results

Box:

Column:

Lintel:

Simulating Bone-like Strain Adaptation in Space Trusses 15

Arch:

